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Abstract: Cross-correlation betweeiN—1H dipolar interactions anéPN chemical shift anisotropy (CSA) gives

rise to different relaxation rates of the doublet component&\f{1H} peptide backbone amides. A simple scheme

for quantitative measurement of this effect is described which yields information on the magnitude of the CSA from
the relative intensities ofH—1°N correlations obtained with two slightly different pulse schemes. The method is
applied to a sample of uniformA?N-enriched ubiquitin and measurements conducted at two field strengths (8.5 and
14 T) yield identical results. The degree of relaxation interference correlates with the isdttomihemical shift

and results indicate that the sum of the most shielded principal components of the CSA tensor is nearly invariant to
structural differences in the polypeptide backbone. The relaxation interference is directly proportional to the generalized
order parametel$?, of the peptide backbone amides, and this relation can be utilized to obtain approximate values
for these order parameters.

There is a renewed interest in understanding the relation tensors is much smaller than f&N nuclei attached to & in
between protein structure ad#C andN chemical shiftd:™3 the |aOspin state, and the two types BN nuclei relax at very
Indeed, recerdb initio calculations show considerable promise different rates. This differential relaxation is commonly referred
for providing an accurate correlation between chemical shift to as a cross-correlation or relaxation interference éffett
and the structure of the peptide backbone. In proteins, the and a simple treatment of this effect, directly applicable to the
results of calculations could only be compared with the value case of peptidé>N—1H amide pairs, has been presented by
of the isotropic chemical shift, as accurate values for the Goldman!3 Although cross correlation forms the basis of
individual chemical shift anisotropy (CSA) tensor elements in several elegant heteronuclear magnetization transfer experi-
proteins are not easily measured. Here we demonstrate that anents!®1”more often it is considered a nuisance as it can alter
measure for the magnitude of the CSA of individual peptide the outcome of relaxation measurements if no precautions are
backboné®N nuclei can be obtained from quantitative measure- taken to eliminate the effeét-2° Here we demonstrate that
ment of interference effects between the CSA and dipolar the effect can be used advantageously to obtain information on
relaxation mechanisms. The magnitude of the interference effectthe >N CSA tensor and on the internal dynamics of the peptide
is expected to be directly proportional to the generalized order backbone. The method is demonstrated for human ubiquitin, a
parameters?,*® and this correlation is confirmed experimentally.  small globular protein of 76 residues which is well-characterized
Inversely, the simple relaxation interference measurement canby both X-ray crystallograpiy and numerous NMR studié:2’
be used to obtain the relati® values of the backbone amides.

Relaxation of peptide backbon€N nuclei in proteins is
dominated by CSA and by the dipolar interaction betw&ah
and its directly attached proton. Based on solid-state NMR
studies of model compounds containing peptide bonds. e
CSA tensor is nearly axially symmetric and its unique axis
makes a relatively small angle ob. 20—24° with the N—H
bond vectof° As a result, for a®N nucleus attached to a
proton in the|S0spin state the sum of the dipolar and CSA
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CSA-Dipolar Cross Correlation
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A = d[43%(0) + 402I°(0) + 30w, + 302 (wy,) +

Moy — op) + 33%wy) + 63 Yoy + )] (1b)
1 = 20d{ 43°%0) + 33w} (1c)

whered = }/HZ)/Nzhz/(BOFZZrHNG), a = —47'[/380(0'” — OD)I‘HN?’/
(hyn), andryy is the>N—1H internuclear distance, assumed to

Figure 1. Pulse scheme for quantitative measurement of cross pe 1.02 A. J9%w), J*%(w), andJ*(w) are the spectral densities

correlation. In the reference experiment (scheme B), the #ide30°
and composite (96-220,—90,) 18C° pulses are not applied, whereas

they are applied in scheme (A), where all resonances are the result of,

cross correlation effects during the periotl. Narrow and wide pulses
correspond to flip angles of 9&nd 180, respectively. The two low

power pulses immediately preceding and following the last non-selective
1H 180 pulse have a width of 1 ms each and correspond to flip angles

of 90°. With the carrier positioned on the,8 resonance, they are part
of the WATERGATE water suppression scheth&he radio-frequency
phase of all pulses is assumedunless indicated. Delay durations:
~ 2.4 ms;0 = 2.67 ms,T./8 < A < T,/2. Phase cyclingp: = y,~y;

D2 = XX—X,—X; ¢4 = 4(X),4(Y),4(—X),4(—Y); ¢s = —X; Receiver= x,-
2(—X),x,—%,2(X),—x. Quadrature detection in th& dimension is
accomplished by incrementings; in the States-TPPI manner. All

gradients are sine-bell shaped, with an amplitude of 25 G/cm at their

center. Durations: G1,2,3,4:5 2.75, 2, 1, 1.5, and 0.4 ms.

Experimental Section

All NMR experiments were carried out at ZC on a sample of
commercially obtained (J2N)-ubiquitin (VLI Research, Southeastern,
PA), 1.4 mM, pH 4.7, 10 mM NaCl. Experiments were carried out on
Bruker AMX-360 and AMX-600 NMR spectrometers operatingtat

for dipolar autocorrelation, CSA autocorrelation, and dipolar-
CSA cross correlation, respectively. For an axially symmetric
CSA tensor, these spectral densities are given by

PYw) = [ TP(uy(0)u () Tcost) dt )

whereu,(t) is the unit vector describing the orientation of the
axially symmetric interactiom at timet, andP5(x) = (3x2 —
1)/2. Assuming isotropic rotational diffusion of a rigid body,
one has

I%w) = I%(w) = I%w)/P,(cosh) (3)
where@ is the angle between the unique axes of the CSA and
dipolar tensors, i.e§ = cos Y(uq(t)-uc(t)). Although eq 3 is
no longer rigorous in the presence of internal motion, results
of calculations shown in the Appendix indicate it remains a very
good approximation provided is small. Therefore, the
superscripts in the spectral density function may be dropped

resonance frequencies of 360 and 600 MHz, respectively. Both @nd eq 1c is then rewritten as

spectrometers were equipped with pulsed field gradidfitN probe-
heads, optimized fofH detection.

Data matrices acquired at both 360 and 600 MHz consisted of 128*-

(t1) x 768*(ty) data points, with acquisition times of 64)(and 83 ms
(t2). A total of 32 scans per complex increment was collected in

n = 200{4J(0) + 3J(w,)} P,(cos6) 4

For the case of isotropic rotational diffusion and additional
rapid internal motions, occurring on a time scalg and

eXperiment B (Flgure l) at bOth 360 and 600 MHZ, Whereas 384 and descrlbed, |n the model_free approach Of Llparl and Sfaiw’

128 scans were accumulated in experiment A (Figure 1) at 360 and

600 MHz, respectively. All experiments were performed with ¥He
carrier positioned on the 4@ resonance and théN carrier at 116.5
ppm. Durations for the dephasing delay,2vere 46.7, 68, and 132
ms at 600 MHz and 132 ms at 360 MHz.

All data sets were processed using 4bifted sine-bell apodization
and zero filling in both dimensions to yield a digital resolution of 2.3,
3.9 Hz (R) and 2.7, 4.5 Hz (§) for 360 and 600 MHz data respectively.
Data were processed using nmrPfpend analyzed with the program

a generalized order paramef& the spectral density function
is defined as

J(w) =STJA+ 0’ + (1 — DL+ 0*7®)  (5)
with 771 = 771 + 7oL The time constant. is the rotational

correlation time, assuming isotropic diffusion. However, ro-
tational diffusion of ubiquitin is slightly anisotropic, and to a

PIPP% Resonance intensities were obtained from peak heights using good approximation is described by an axially symmetric

three-data-point interpolatidi,and resonance assignments are taken
from Wang et af®

Results and Discussion

Assuming an axially symmetrféN chemical shift tensor with
an anglef between the orientation of its unique axis and the
N—H bond vector, thé>N transverse relaxation rates for the
two doublet components of an isolatétN—1H spin pair are
given by13-15

R=4A%79 (1a)
where the+ sign applies to the upfieltPN doublet component
({ne < 0) andZ andy are given by
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diffusion tensor,D, with DDy = 1.17%27 In this case,
calculation of the cross-correlation term becomes considerably
more complex®3lunlesst = 0°. Forf = 0°, one may simply
use eg 1 in combination with the spectral density function
applicable for axially symmetric rotational diffusion with internal
motion 3233

Jw) = SZZAkrk/(l + 0’t%) + (1 — D1+ v’ (6)

with k=1, 2, 3 andA; = 0.75 sirt 3, A, = 3 sir? S cos 3, As

= (1.5 cog 3 — 0.5%, whereg is the angle between the-NH
bond vector and the unique axis of the rotational diffusion
tensor;zy = (4D|| + ZDD)_l, T2 = (D|| + 5DD)_1, 73— (GDD)_l,
andz™! = 7,71 + (2D, + 4Dp) %, whereD, and Dg are the
rotational diffusion constants parallel and perpendicular to the
unigue axis of the diffusion tensor. For peptid nucleif is
small (20-24°), and use of egs 1 and 6 provides a reasonable
approximation.

(32) Woessner, D. El. Chem. Physl962 3, 647-654.
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Measurement of Cross Correlation. Figure 1 shows the

pulse scheme used for measuring the cross correlation effect

guantitatively. The pulse scheme is essentially an HSQE

15N correlation experimerit! with a relaxation period &
inserted before thé&N evolution period. The experiment is
performed twice, once with applying the shadétl 90° and
compositeH 180° pulses, and once without applying these
pulses. In the following these experiments will be referred to
as A and B, respectively.

In both versions of the pulse schemé] magnetization
(represented by S) is transferred N (represented by I) at
time point a in Figure 1, and antiphase transver§¥
magnetization, described by the operator produgs;2 is
generated by the first 905N pulse. The two!N doublet
components are described %, & 1,/2. The downfield doublet
component|yS, — 1,/2, relaxes at a raté — 5, whereas the
upfield component relaxes at+ » (cf. eq 1). Thus, after the
dephasing delay 2 (time pointb in Figure 1), the transverse
magnetization is given by

o, = (1,S, — 1/2) exp[-2A(L — n)] + (1,8, + 1/2) x
exp[-2A( + )] =1, S(e" + e ) +1(e" — )2 (7)

where e = exp[-2A(4 + u)]. At time point b the 15N
magnetization is returned to theaxis. In scheme A, the
antiphase fraction of th¥®N z magnetization|,S(e™ + €7), is
destroyed by the sequential application of & 98 pulse and
pulsed field gradient G3. The in-phase componk| — ¢7)/

2, is converted to antiphase magnetization during the subsequen

delay, &, prior tot; evolution and transfer 3N magnetization

to protons by the final reverse INEPT part of the pulse scheme.
In scheme B, the 90'H pulse is not applied and tHgS, 15N
magnetization is converted back into antiphase transvékse
magnetization at time poiit This —1,S{e* + ) term remains
antiphase at the end of the delay, 2s the compositéH pulse

is not applied in scheme B. After ttig evolution period, the
15N magnetization is returned to observable proton magnetiza-
tion, in a manner identical to that of scheme A. In the absence
of the compositéH 180° pulse, the in-phas€N magnetization,
Iy(e™ — €7)/2, remains in phase at the end of theevolution

period and therefore does not contribute to the signal detected’l
in scheme B. Thus, the ratio of the signal intensities obtained Son —

with schemes A and B equals

1= (¢ — € + ") =tanh(2Ay) (8)

Note that the losses caused by relaxation are essentially identicaP'

in schemes A and B. The faster relaxation of th® term
between time pointb andc in scheme A, relative to the decay
of I, in scheme B, produces negligible relaxation loss because
the duration of this delay (2 ms) is about two orders of
magnitude shorter than the inverse of the difference in relaxation
rates ofl,S, andl,. In addition to the very small relaxation
loss between time points andc in scheme B, there is also a
loss of signal which occurs in scheme A and not in B, caused
by the imperfection of the composite 188 pulse. As a test,
adding a composite pulse between time pdrgsdc in scheme

B is found to change the average intensity of fiid—1H
correlations by a factor 0f0.986, indicating that 99.3% of the
protons are inverted by the composite pulse and the imperfection
in this pulse therefore may be safely ignored. Th#g ratio
divided by the uncertainty in this ratio caused by thermal noise
is highest when & ~ 171, i.e., when the duration of & is
approximately equal td». Thus, the random uncertainty in

(34) Bodenhausen, G.; Ruben, D.Chem. Phys. Lettl98Q 69, 185~
189.
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Figure 2. Ratio of intensities|a/lg, obtained with schemes A and B

of Figure 1, as a function of 2, at 600-MHzH frequency, for six
different residues in ubiquitin. The drawn lines correspond to eq 8.

the derived CSA values is minimal wherA2> T,. Note that
in both schemes A and B the applicable valueTefis the
average of th&; for in-phase and antipha$®N magnetization,
which, on average, is about a third shorter than the in-phiase
measured in regular relaxation experimeft®

Figure 2 shows théa/lg ratio as a function of . As can
be seen from this figure, the ratio agrees very well with the
theoretical dependence of eq 8. This means that even for a
dephasing time as long &3, there is no significant second-
order effect on thda/lg ratio. However, if durations of 2
longer thanT, are used, such effects can become noticeable.
For example, there is a cross-correlation effect betweettithe
IHN dipolar interaction and the approximately 8 times smaller
intraresidue!>N—1He dipolar interaction. In particular fop
backbone angles near12(, where the two dipolar interactions
are nearly collinear, such dipotelipole cross correlation can
give rise to a slight decrease of the measuggts ratio.

As can be seen from egs 4 and 8, thég ratio is a function
of S¥(oy — op)P2(cos ) and the effects of a variation im, —
cannot be separated from a changé ior 2. We refer to
on)P2(cos0) as the reduced CSA, or CSA S?values
for human ubiquitin have been derived previously frée
relaxation time measuremenftsand based on solid-state NMR
measurements on model compounilgs generally believed to
fall between 20 and 24~° which putsP,(cos6) in the 0.825-
75 range.
Figure 3 shows excellent agreement between €SAlues
measured at 600-MHH frequency for two different durations
of 2A. A very small systematic decreaseoaf 1.1% in CSAed
observed for the longer duration ofA2is presumably caused
by cross correlation betweeiN—1HN and *N—1H* dipolar
interactions, mentioned above. The measurement was also
repeated at 360-MH¥ frequency and again shows very good
agreement with the data measured at 600 MHz (Figure 3B).

Figure 4 shows the values of CSfas a function of residue
number. As expected the highly mobile C-terminal tail yields
much smaller values for CS® than the remainder of the
protein. After dividing CSAed by the previously derive®&?
value, the values become more homogeneous, with an average
value of 140+ 9 ppm (Figure 4B). Assuming @& value of
20°, this yields an average value fofi — og of —170 ppm.
This is slightly larger than the value of 160 ppm commonly

(35) Bax, A.; lkura, M.; Kay, L. E.; Torchia, D. A.; Tschudin, R.
Magn. Reson199Q 86, 304—318.

(36) Peng, J. W.; Thanabal, V.; Wagner, & Magn. Resonl991, 95,
421-427.
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Figure 3. Comparison of CS&! values measured from (A) data 20
acquired at 600 MHz andA durations of 46.7 and 132 ms and (B) -160 -150 red -130 -120

data acquired at 600 and 360 MHz, both fax 2 132 ms. > (ppm)
S
-0 ‘ ' ' K Figure 5. Correlation between CS#/S? and the deviationAd, of
A) a the isotropic shift from the random coil vaidor the backbone amide
ea 50T 1 15N nuclei in human ubiquitin. CS# values are calculated from data
CSA recorded at 600 MHz, using the average of the values obtained\for 2
Ppm) ol e a8 2 ] = 46.7 and A = 68 ms and the axially symmetric diffusion parameters.
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Residues Le{#-Gly’® are not included in this figure as the low-order
parameters for these residues amplify the uncertainty in@SA The
correlation coefficientr, equals 0.50.

4

B)
red 80 | | As shown in Figure 5, experimentally we observe that a
csa® 80 S 9T . ) )
o2 downfield isotropic shift is correlated with an increase in the
I 8% CSA. Therefore, this means that variationsoin are larger
130 | @ o B ags® 8 s -101€, -
o5 e g o 8, o8, 8 g b s Fachti e than those in ¢2; + 033)/2. The slope of the correlation
. ‘ . ° observed in Figure 5 is-0.30, which is close to the value of
20 40 60 —1/3, expected if ¢22 + 033)/2 were invariant to structural
Residue Number . . . .
- 4 val £ (A) CSA and (B) CSAY? funct ] differences. Thus, variations im, and o33 must be highly
igure 4. Values of (A) and (B) as a function o correlated and opposite in sign. This agrees with the remarkable
residue number in human ubiquitin. The CSlAvalues have been bservation by Hivama et &lfor the 15N CSA tensor of
calculated from data acquired at 600 MHz ad=2 46.7 ms, assuming O. S€ .a on by Hiyama € . 0 € . € SO. c.) .a
isotropic ) and axially symmetric4) rotational diffusion. tripeptide whererz, and o33 dlffe_r by 47 ppm n the triclinic
crystal form, but by only 7 ppm in the monoclinic crystal form,
with the isotropic shift andr1; remaining unchanged.
Considering that fluctuations i, + 033)/2 do not contribute
significantly to variations iroy; — (022 + 033)/2, the scatter in
the correlation shown in Figure 5 must originate from one or
more of the following five causes. First, it is possible that all
three principal values vary together, i.e., without changing the
chemical shift anisotropy. This assumption is implicit when

-180
0

used for the magnitude of the CSA AN relaxation studies.
However, this latter value was based on the width of powder
patterns observed in solid-state NMR spectra of polycrystalline
peptides. As a result of rapid internal motions the width of
these powder patterns is reduced by a fa8aoelative to the
true value of the CSA. The magnitude of the CSA observed

Isno:ir:je-saftzestl\:lgj (:Z;Bﬁ;efore is in good agreement with IoreVlousplotting the deviation from random coil chemical shiftg,
’ instead of the isotropic shiff, itself. 1°N chemical shift tensors

_ Corr(_el?;ion between CSA and Isotropic Shift. The reported by Oas et lindicate that the change in isotropic shift
isotropic**N shift, , equals minus one-third of the trace of the  perween a glycine and a tyrosine residue is approximately the

chemical shift tensor:d = —(011 + 022 + 033)/3. The least  same as the change in the{ + 033)/2 values of these two
shielded component;, is the one oriented in the peptide plane  tensors, and therefore provide some justification for using the
and nearly orthogonal to the-N bond. Theoz, and o33 Ad instead ofd. Second, there is considerable uncertainty in

components are most shielded and are of comparable magnitudene random coit®N shift values, which can differentially affect
in peptide bonds. Fof = 0° the magnitude of the cross-  theA¢ values. For example, the pairwise rmsd between random

correlation effect is determined by — (022 + 033)/2. coil shifts reported by Glushka et #l.and Wishart et a8 is
Although this relation is only valid wheft = 0°, the assumption 2.8 ppm. Third, random error in the measurement gfg
of an axially symmetric tensor withy — og = 011 — (022 + results in an uncertainty in CS# which is further amplified
033)/2 yields nearly the same magnitude for the cross-correlation when CSAedis divided byS? ~ 0.85, and by the uncertainty in
term, providedd < 25°. 2, estimated at 1%. The random uncertainty in ©%4s

If the 011, 022, andoss values of the™N shielding tensors in estimated by comparing valut_as (_Jlerived fr_om data mga;ure_d at
ubiquitin are normally distributed, with standard deviatidng 2A =46.7 and 68 ms. The pairwise rmsd is 1.4 ppm, indicating
A, andAg, respectively, the standard deviation for the isotropic @ random error of 0.7 ppm in the average, used for deriving the
shift is expected to bé/z(A12 + A2 + As)Y2 provided values shown in Figure 5. Thus, the total random error in the
variations ing11, 025, andoss are uncorrelated. A decrease in  CSA®YS? values is estimated to bea 1 ppm. Fourth,

022 OF 033 (i.e., deshielding) gives rise to a smaller chemical Vvariations in the anglé can have a large effect on CSA
shift anisotropy and a smaller value of the cross-correlation term, ™ (37) Glushka, J.; Lee, M.; Coffin, S.; Cowburn, D. Am. Chem. Soc.
in addition to a downfield change of the isotropic shift. In 1989 111 7716-7720.

contrast, a decrease im; will increasethe chemical shift 22532)1\1’!%22”' D. S.; Sykes, B. D.; Richards, F. 81.Mol. Biol. 1991,

anisotropy, but also give rise to a downfield change of the " (39) piotto, M.; Saudek, V.; Sklenar, \I. Biomol. NMR1992 2, 661~
isotropic shift. 665.
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1.0

ppm, andd = 20°. If no clear clustering of théa/lg ratios is
observed, this could indicate that the rotational diffusion is
substantially anisotropic, or that there is an exceptionally large

08 r ° . 1 . . . .
. number of mobile residues in the protein.
06 1 . 1 Concluding Remarks
SZ
o4 We have demonstrated that cross correlation between dipolar

and CSA relaxation mechanisms can be quantitatively measured
. from two simple two-dimensional NMR experiments. FeM,

the experiments offer good sensitivity, approximately a factor
of 5 lower than a reguladH—5N HSQC experiment, and yield
information on the magnitude of the chemical shift anisotropy,
provided order parameters for the backbone amides have been
derived from!®N relaxation measurements.

The averagé®™N CSA, measured in this manner+470 ppm,
assumingd = 20°. This value is about 10 ppm larger than the
width of the>N powder pattern observed in solid-state NMR
spectra of small model compounds, but this difference may be
caused by the fact that the solid-state NMR powder pattern width
is reduced by rapid internal fluctuations of the amidé&or
example, for arg? value of 0.9, the width of the powder pattern
reduces by 5% relative to the static value. The correlation
observed between the CSA and the isotropic shift indicates that
the sum of the most shielded CSA tensor components is largely
invariant to structural changes.

Provided the rotational correlation time of the protein is
known, the measurement of cross correlation yields information
on the generalized order parame®ri.e., on the amplitude of
the rapid internal motions. In contrast to the most commonly

02 |

0.0 ; :
0 50 100

CSA ™ (ppm)
Figure 6. Correlation between the CSAvalues in human ubiquitin
and the previously measured order paramete@SA®? values are
calculated from data recorded at 600 MHz, usiy 2 46.7 ms,
assuming isotropic diffusion with, = 4.1 ns. The solid line corresponds
to the correlation expected é — oo = —170 ppm and = 20°. The
previously measuref? values deviate from the solid line with a rmsd
of 0.045.

red 150

Even a small increase id@ from, for example, 20 to 22
decreases the expected CSIS? value by ~6 ppm. It is
therefore likely that variations ifi are also a significant source
of the scatter observed in Figure 5. Finally, if the orientation
of theo11 tensor component is not collinear with the-N bond
vector, the deviation from axial symmetry of tHtl CSA tensor
provides an additional contribution to cross correlation and
thereby affects the value derived for C8A Following Chung
et al.2° calculations for the case of isotropic tumbling and an used approach, where this number is derived ffamiT,, and
asymmetric'®N CSA tensor indicate that the typical values of NOE values, the present method is not affected by line
the>N CSA asymmetry observed in peptide bond amides affect broadening caused by slow conformational exchange. However,
CSA™d by not more than a few percent. as a result of the inherent variationsérand the magnitude of
Correlation between CSA®? and > The magnitude of the  the 15N chemical shift anisotropy, the precision of the order
relaxation interference effecy, is directly proportional to the ~ parameter obtained from the experiments proposed in this paper
generalized order paramete®?, and the variability inS? is is limited toca. 5%. TheS? values derived in this manner show
considerably larger than the variationdn — op. Therefore, improved agreement with order parameters obtained from
the CSA®dvalues provide information on the relative values of conventionalSN relaxation measurements when the previously
the order parameters of the backbofid nuclei. Figure 6 derived axially symmetric diffusion tensdris used instead of
shows the correlation between the order parameters calculatedsotropic tumbling.
previously from5N T; and T, values and the CS# values
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rmsd decreases to 0.040 when the spectral density function

appropriate for axially symmetric diffusion (eq 6) and the Appendix

previously reported principal values of the diffusion tensor are

used. As discussed above, this residual rmsd of 0.04 is caused In the presence of internal motions, there is no rigorous,

by variations in the magnitude of the CSA and small variations generally valid relationship between cross- and auto-correlation

in the angled between the dipolar vector and the unique axis functions. However, this Appendix shows that if the rotational

of the CSA tensor. diffusion of the macromolecule is isotropic and the internal
The results shown in Figure 6 indicate that if the rotational motions can be described as independent, small, equal amplitude,

correlation time is known, the individual backbone order restricted rotations about three mutually orthogonal ak®s,

parameters can be estimated from the GSpalues with an  (4p(0)-uq(t)) = P2(coSOpq)) P2(ui(0)-ui(t)) L with i = p, g, just

rms uncertainty of less than 0.05. Even if the rotational as is the case in the absence of internal motions. Moreover,

correlation is not knowra priori, it is well-established from  for a more general class of physically plausible small amplitude

numeroustSN relaxation studies that the order parameters for internal motions, the above is a good approximatiofipif is

most N-H pairs involved in secondary structure cluster are sufficiently small.

about a value of 0.85. Thus, if/lg ratios are plotted as a Unlike auto-correlation functions, cross-correlation functions

histogram, the most populatéd|g ratio corresponds to an order  are not always positive and can even increase with time. Since

parameter 0f-0.85, and the isotropic rotational correlation time NMR cross-correlation functions are identical to those that

can then be calculated assuming again that ogp = —170 determine the fluorescence depolarization of probes whose
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emission and absorption dipoles are not coaxial, they have beerabout thex axis 6, = 64 = /2 and¢pq = 20, and about thg

extensively studied in the fluorescence literattie. axis 0y, = /2 + 012, 04 = 72 — 6/2, andgpq = 0. Similarly
For an isotropically reorienting macromolecule, in the pres-

ence of internal motions that are uncorrelated with the overall C,(®) = Cyy(®0) =1 — 3Eﬂc§yz)2l3in2(9/2) - 3mayx)2|]—

motion, 300y,)*Gos(0/2) (A.8)
[PZ(/"p(O)'ﬂq(t))D: exp(-t/z;) [Pz(/‘p(o)'ﬂq(t)) Ghiernal = Wh 0v,)20= [06v.)20= Tov.)20= [dv)2
exptIr) Coft) (A1) en [oy,)*= [oyx)*U= Woyy)"Li= Woy) ZD
: - Cpq(e) = Py(cosO)[1 — 6[oy) (A.9)
In general Cp(0) = P2(cos6pg). The simplest approximation
for Cpg(t), which is exact at = 0 ando, is and
Cpq(t) = Cpq(oo) + [PZ(COSOpq) - Cpq(oo)] exp(_t/te) (A2) qu(oo) =1- 6mé‘)/)2[| (A].O)

When p= q, Cii(») is just the square of the generalized order |t then follows from eq A.2 that

paramete52. In generalSyf = S as is commonly assumed,

although for'>N in peptide bonds one expects this to be a very Cpq(t) = Pz(cose)qu(t) (A.11)
good approximation. When g q, Cpy(») = [/ dQ dQ'

Pa(up utq') is not necessarily positive and can be greater than as claimed in the beginning of the Appendix. Note, however,

Coq(0). that eq A.11 is not exact for arbitrary types of internal motion
To illustrate the above, consider restricted internal rotations and applies only to isotropic overall motion. However, provided
described by the angte about thez axis. Ther?! 0 is small, eq A.11 remains a good approximation for other

physically reasonable types of internal motion of peptide amides.
2 For example, if{dy,)?C= 0 and[{dyx)?C= [{oyy)?0= [{oy)%0)
Cof® =3 @xpIm(y(0) — y(O)] @g®(6,)d(6)
m=-2

Cpp(00) = Cyge0) = 1 — 3Mdy)*IL + cos(6/2)] =
cosfnp,y) (A.3)

1— 6[00y)°M1 — 648+ ...) (A.12)

wheref, and 8, are the polar angles of, anduq, ¢pq is the and
difference in their azimuthal angle, antj® are reduced
Wigner rotation matrices. It follows from eq A.3 that Cpq(oo) = P,(cosO){1 — 3@6)/)2Eﬂcosz(0/2) cosO -+
2 ® (2) cos D]/P,(cos)} = P,(cosO){1 — 6{0y)M1 +
A.4
A4 Comparison of egs A.12 and A.13 confirms that eq A.11 remains
For free rotations, such as apply to methyl groupg () = a good approximation provideg is small.
P2(cos 0,)P2(cos Og), andCii(w) = P,(cos6;)?, i = p, q. For When the rotational diffusion is anisotropic, expressions for

backbone amides the amplitude of rotations is restricted andthe correlation functions become considerably more complex.
one has|éxpimy)P = 1 — nP{dy)?0] where [{0y)?0is the For example, for axially symmetric rotational diffusion, in the
mean square of the rotation angle. After some algebra, oneabsence of internal motions, one #a8
finds

[Po(1,(0)-144(1)) U= exp(—=6Dt)P,(cos6,)P,(cosb,) +
Cpo(®0) = P,(cosb,,) — 3[0y)*Csin 0, sin 6, x exp[— (5D + D)t|(3/4) sin(D,) sin(2B,) cosk,,) +

(COSGp C0s6, COSgp, + sin 0, sin 6, cos prq) (A.5) exp[—(2D,, + 4D))t|(3/4) Sil‘?(ep) sir12(9q) coS(2,) (A.14)

When p= g, this reduces to where now6), and 6, are the spherical angles describing the
o . orientation ofu, and uq relative to the unique axis of the
Cqq(®@) = 1 — 3[0y)°Tsir’ 6, (A.6) rotational diffusion tensor. The auto-correlation function is

Equation A.5 shows that, depending on geomefiyc) can [P,(; (0)-;(t)) L= exp(—6Dt)[P,(cos6,)]? +
be either smaller or greater th&a(cos 6p). _

Equation A.5 can be generalized to include independent, exp[—(5D;, + D,)t](3/4) sirf(26;) +
small-amplitude, restricted rotations about one or more ad- exp[—(2D,, + 4D))t](3/4) sin4(6'i) i=p,q (A.15)
ditional axes. To lowest order, all one has to do is add
analogous terms proportional t@dy)?0 with coefficients and thus in generdP;(up(0)-up(t)) 07 P2(uq(0)-1uq(t)) = [Po-
determined by the polar and azimuthal angles with axis | taken (up(0)-uo(t)) P2(COS Bpg). Thus, the approach used in the text

as thezaxis. To illustrate this, suppogg anduq lie in theyz to treat anisotropic overall motion is far from rigorous, although
plane, with thez axis bisecting the angle betwegpandg,. If it is expected to be a reasonable approximation whgnis
the angle between, q and thez axis is£6/2, thenPx(cos 6pg) small.

= Py(cos#). Suppose one has independent rotations with mean-

square amplitudgdy,)2Cl1 = X, y, z, about the three axes, then Supporting Information Available: Table with CSAed
values, derived from data measured at 360 and 600 HHz

Cpq(e) = P,(cosh) + 30oy,)*[sin*(0/2) cosb] — frequency for three different durations of the dephasing delay,

2A (3 pages). See any current masthead page for ordering and
3m5)/y)2[[‘0032(9/2) coso] — 3[@6yx)2E[lcos ] (A7) Inte(rngt gcc?ass instrugtions. Pag ’

since for rotations about theaxis 6, = 6 = 6/2 and¢yq = 1, JA960510M



